Development of a physical 3D anthropomorphic breast phantom.
نویسندگان
چکیده
PURPOSE Develop a technique to fabricate a 3D anthropomorphic breast phantom with known ground truth for image quality assessment of 2D and 3D breast x-ray imaging systems. METHODS The phantom design is based on an existing computer model that can generate breast voxel phantoms of varying composition, size, and shape. The physical phantom is produced in two steps. First, the portion of the voxel phantom consisting of the glandular tissue, skin, and Cooper's ligaments is separated into sections. These sections are then fabricated by high-resolution rapid prototyping using a single material with 50% glandular equivalence. The remaining adipose compartments are then filled using an epoxy-based resin (EBR) with 100% adipose equivalence. The phantom sections are stacked to form the physical anthropomorphic phantom. RESULTS The authors fabricated a prototype phantom corresponding to a 450 ml breast with 45% dense tissue, deformed to a 5 cm compressed thickness. Both the rapid prototype (RP) and EBR phantom materials are radiographically uniform. The coefficient of variation (CoV) of the relative attenuation between RP and EBR phantom samples was <1% and the CoV of the signal intensity within RP and EBR phantom samples was <1.5% on average. Digital mammography and reconstructed digital breast tomosynthesis images of the authors' phantom were reviewed by two radiologists; they reported that the images are similar in appearance to clinical images, noting there are still artifacts from air bubbles in the EBR. CONCLUSIONS The authors have developed a technique to produce 3D anthropomorphic breast phantoms with known ground truth, yielding highly realistic x-ray images. Such phantoms may serve both qualitative and quantitative performance assessments for 2D and 3D breast x-ray imaging systems.
منابع مشابه
Design, Construction and Evaluation of an Anthropomorphic Head Phantom for Assessment of Image Distortion in Stereotactic Radiosurgery Planning Systems
Introduction: In recent years, the use of magnetic resonance (MR) images in radiation treatment planning has drawn considerable attention. However, although the extent of a tumor can be determined in great detail on MR images, the geometric accuracy of these images is limited by distortions stemming from the inhomogeneity of the static background magnetic field, the nonlineari...
متن کاملPower Spectrum Analysis of an Anthropomorphic Breast Phantom Compared to Patient Data in 2D Digital Mammography and Breast Tomosynthesis
Digital breast tomosynthesis (DBT) images of a novel anthropomorphic breast phantom (UPenn phantom) acquired on two breast tomosynthesis systems were analyzed in terms of their power spectra (PS). The β and κ power law coefficients were estimated from 2D planar, tomosynthesis projection images and reconstructed planes. These data were compared to the PS characteristics as retrieved from a group...
متن کاملComparison of an anthropomorphic PRESAGE® dosimeter and radiochromic film with a commercial radiation treatment planning system for breast IMRT: a feasibility study
This work presents a comparison of an anthropomorphic PRESAGE® dosimeter and radiochromic film measurements with a commercial treatment planning system to determine the feasibility of PRESAGE® for 3D dosimetry in breast IMRT. An anthropomorphic PRESAGE® phantom was created in the shape of a breast phantom. A five-field IMRT plan was generated with a commercially available treatment planning sys...
متن کاملDevelopment and characterization of an anthropomorphic breast software phantom based upon region-growing algorithm.
PURPOSE We present a novel algorithm for computer simulation of breast anatomy for generation of anthropomorphic software breast phantoms. A realistic breast simulation is necessary for preclinical validation of volumetric imaging modalities. METHODS The anthropomorphic software breast phantom simulates the skin, regions of adipose and fibroglandular tissue, and the matrix of Cooper's ligamen...
متن کاملFabrication of anthropomorphic phantoms for use in total body photon irradiation and total skin electron irradiation studies
Introduction: Total Skin Electron Therapy (TSET) and Total Body Irradiation (TBI) are kinds of treatment which use electron and photon beams to treat special types of cancers. The aim of these techniques are to deliver uniform dose to the entire skin while minimizing delivered dose to organs at risk. To check the homogeneity of dose delivery in TBI and TSET, using a humanoid ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 38 2 شماره
صفحات -
تاریخ انتشار 2011